Learning to Learn

  • 분류 전체보기 (215)
    • Research Note (0)
      • KD for openset (0)
      • instance learning for opens.. (0)
      • Use Background as openset (0)
      • Vision Transformer (0)
      • Apply Fourier Transform Sam.. (0)
      • Check Openset sample model (0)
    • Paper (34)
      • Openset recogniton (8)
      • Out-of-distribution (2)
      • Imbalanced data (7)
      • Semi-Supervised learning (1)
      • Unsupervised learning (9)
      • Knowledge distillation (1)
      • ETC (6)
    • Project (0)
      • ICT (0)
      • LG (0)
      • AI Challenge (0)
    • Tutorial (1)
    • Code (2)
    • Deep learning (1)
    • Math (6)
      • Linear Algebra (1)
      • Baysian learning (1)
      • Causal Inference (3)
      • Optimizaiton (1)
    • Python (25)
    • Algorithm (0)
    • Pytorch (8)
    • Terminal (13)
    • Docker (4)
    • CUDA (1)
    • Dic (102)
  • 홈
  • 태그
  • 방명록
/ /

Tutorial

  • Adversarial Robustness - Theory and Practice 2020.07.24

Adversarial Robustness - Theory and Practice

2020. 7. 24. 14:03
728x90

https://adversarial-ml-tutorial.org/

 

Adversarial Robustness - Theory and Practice

This web page contains materials to accompany the NeurIPS 2018 tutorial, "Adversarial Robustness: Theory and Practice", by Zico Kolter and Aleksander Madry. The notes are in **very early draft form**, and we will be updating them (organizing material more,

adversarial-ml-tutorial.org

 

728x90
저작자표시 (새창열림)
PREV 1 NEXT

+ Recent posts

Powered by Tistory, Designed by wallel
Rss Feed and Twitter, Facebook, Youtube, Google+

티스토리툴바