'Dic' 카테고리의 다른 글
annotation (0) | 2019.07.09 |
---|---|
num_workers (0) | 2019.07.08 |
end-to-end trainable neural network (0) | 2019.07.08 |
Affine transformation (0) | 2019.07.07 |
Squishing function (0) | 2019.07.06 |
annotation (0) | 2019.07.09 |
---|---|
num_workers (0) | 2019.07.08 |
end-to-end trainable neural network (0) | 2019.07.08 |
Affine transformation (0) | 2019.07.07 |
Squishing function (0) | 2019.07.06 |
num_workers (0) | 2019.07.08 |
---|---|
Ablation study (0) | 2019.07.08 |
Affine transformation (0) | 2019.07.07 |
Squishing function (0) | 2019.07.06 |
Meta Learning (0) | 2019.07.05 |
Ablation study (0) | 2019.07.08 |
---|---|
end-to-end trainable neural network (0) | 2019.07.08 |
Squishing function (0) | 2019.07.06 |
Meta Learning (0) | 2019.07.05 |
Basic Field of DL (0) | 2019.07.05 |
end-to-end trainable neural network (0) | 2019.07.08 |
---|---|
Affine transformation (0) | 2019.07.07 |
Meta Learning (0) | 2019.07.05 |
Basic Field of DL (0) | 2019.07.05 |
Attention (0) | 2019.07.05 |
RL — Meta-Learning - Jonathan Hui - Medium
A fundamental problem in AI is it cannot learn as efficient as a human. Many deep learning classifiers demonstrate superhuman performance…
medium.com
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
Meta-Learning: Learning to Learn Fast
Meta-learning, also known as “learning to learn”, intends to design models that can learn new skills or adapt to new environments rapidly with a few training examples. There are three common approaches: 1) learn an efficient distance metric (metric-based);
lilianweng.github.io
🐣 From zero to research — An introduction to Meta-learning
Meta-learning is an exciting trend of research in the machine-learning community which tackles the problem of learning to learn.
medium.com
Affine transformation (0) | 2019.07.07 |
---|---|
Squishing function (0) | 2019.07.06 |
Basic Field of DL (0) | 2019.07.05 |
Attention (0) | 2019.07.05 |
Top-1 error & Top-5 error (0) | 2019.07.03 |
https://tykimos.github.io/2018/01/04/ISS_Recent_Trends_in_Deep_Learning/
[ISS 세미나] 최성준님, 딥러닝 최신동향
딥러닝 기술은 하루가 멀다하고 발전하고 있습니다. 이번 ISS에서는 Google Developer Expert이시고 서울대학교 사이버물리시스템 연구실 박사과정에 계신 최성준님이 ‘딥러닝 최신 동향’이란 주제로 발표하셨습니다. 열정적으로 강의해주신 최성준님께 감사드리고, 장시간 동안 끝까지 관심있게 들어주시고 좋은 질문 많이해주신 참석자분들에게 감사드립니다. ISS란 Intelligence Space Semiar의 약자로 인공지능 기술과 관련된 인스페이스의
tykimos.github.io
Affine transformation (0) | 2019.07.07 |
---|---|
Squishing function (0) | 2019.07.06 |
Meta Learning (0) | 2019.07.05 |
Attention (0) | 2019.07.05 |
Top-1 error & Top-5 error (0) | 2019.07.03 |
https://arxiv.org/pdf/1811.08581.pdf (Recent Advances in Open Set Recognition: A Survey)